Salt marsh sustainability in New England: progress and remaining challenges Cathy Wigand & Stephen Balogh

Sachuest Pt. National Wildlife Refuge (RI), Thin Layer Placement (2016)

Project points-of-contact: - TLP (Jennifer_White@fws.gov) - volunteers & plantings (wferguson@savebay.org)

Photo credits: Wenley Ferguson

Acceleration of RSLR in recent decades (beginning in 1980)

*Relative sea level at Newport, RI

(*Relative to the most recent MSL datum established by CO-OPS)

Mean annual sea level at New London, CT

Carey et al. 2017ab, Estuaries and Coasts, a) 40:626–639 b) 40:651–661.

U.S. Environmental Protection Agency, ORD, NHEERL, AED

Landscape spatial patterns linked with coastal marsh loss & SLR

Sapowet

Colt State Park

Photo credit: Watson et al. 2017 Estuaries and Coasts 40:662–681

Changes in the cover of *S. alterniflora*, *S. patens*, and bare ground over time in marshes at the RI NERR. Error bars are ± 1 SE

Raposa et al. 2017, Estuaries and Coasts 40:640–650

Advancement of the low marsh, *S. alterniflora* into the high marsh at Parker River NWR, MA

Photo credit: David Burdick

Development of assessment thresholds and metrics of marsh resilience to sea level rise

*Resilience scaled from 1 - 5, with 1 red = lowest resilience ranging to 5 reen = highest resilience	Metric thresholds	Percent of marsh below MHW Elevation change rate (mm yr ⁻¹) Short-term accretion rate (mm yr ⁻¹) Turbidity (NTU)/ TSS (mg I ⁻¹) Tidal range (m) Long-term rate of SLR (mm yr ⁻¹)	 > 80% ≤ 2 ≤ 2 ≤ 10 ≤ 0.6 > 3.4 	> 60% > 2 > 2 > 10 > 0.6 > 2.6	> 40% > 3 > 3 > 20 > 1.2 > 1.8	> 20% > 4 > 4 > 30 > 1.8 > 1	≤ 20% > 5 > 5 > 40 > 2.4 ≤ 1
			NH	<u>MA</u>	RI	NY	
				<u>ج</u>	્રે	•	
			Great Bay	Waguoit 5	Narragans	Hudson A	
	Metrics	Percent of marsh below MHW	42	⁹ ^{ijonbe} m 62	Slieberlew 61	4 108014 38	
	Metrics	Percent of marsh below MHW Elevation change (mm yr ⁻¹)	42 4.3	⁹ ^{<i>ij</i>0} <i>nb</i> ^{<i>e</i>} _{<i>M</i>} 62 1.7	61 1.8	⁴ ⁴ ⁰ ⁵⁰ 38 13.5	
	Metrics	Percent of marsh below MHW Elevation change (mm yr ⁻¹) Short-term accretion (mm yr ⁻¹)	42 4.3 2.7	⁹ ^{ijo} nb ^e y 62 1.7 n/a	61 1.8 1.8	⁴ (0,50) 38 13.5 12.7	
	Metrics	Percent of marsh below MHW Elevation change (mm yr ⁻¹) Short-term accretion (mm yr ⁻¹) Turbidity (NTU)/ TSS (mg I ⁻¹)	42 4.3 2.7 34	⁹ ¹ 00 62 1.7 n/a 1.8	61 1.8 1.8 4.5	38 13.5 12.7 23	
	Metrics	Percent of marsh below MHW Elevation change (mm yr ⁻¹) Short-term accretion (mm yr ⁻¹) Turbidity (NTU)/ TSS (mg I ⁻¹) Tidal range (m)	42 4.3 2.7 34 2.7	⁹ ion 62 1.7 n/a 1.8 0.55	61 1.8 1.8 4.5 0.53	38 13.5 12.7 23 1.4	

C

Modified from Raposa et al. 2016, Biol. Conservation 204:263-275

Restoration and adaptation actions

- Land conservation / Land use planning
- Removal of barriers to future migration
- Tidal restoration and hydrologic modifications
- Elevation enhancement with sediment
- Living shorelines

Ecological advancements in our understanding of marsh processes linked with sustainability

MARSH ECOLOGY

of articles in Web of Science Database

of news items in NewsBank Database

Mastic Beach, Long Island, NY: Buyout & undevelopment of repeat loss houses in marshes and marsh migration zones

Coastal storm vulnerability

Marsh migration potential

Photo credits and point-of-contact: Nicole Maher: nmaher@TNC.ORG

Photo credits and point-of-contact: Nicole Maher: nmaher@TNC.ORG

Bride Brook restoration project in CT

Project Site - Ninigret Pond, RI: thin layer placement marsh restoration

- Back-barrier marsh adjacent to manmade breachway, state-owned public access point, beach and campground
- Microtidal salt marsh habitat exhibiting areas of prolonged flooding, vegetative die-off, subsidence and marsh edge erosion

Photo credit and point-of-contact: Caitlin Chaffee: cchaffee@crmc.ri.gov

Governance: Permitting and Regulatory Compliance

- NEPA EA /Section 106 (USFWS lead federal agency)
- USACE Section 404 Permit (includes sign-off by EPA, NOAA Nat. Marine Fisheries Service)
- State Section 401 Water Quality Certification
- CRMC Assent

Project Costs

Approx. 68,000 cy dredged material to restore approx. 20 acres of marsh

- Design, Engineering and Permitting: <u>\$110,453</u>
- Construction
 - Mobilization/Demobilization: <u>\$334,400</u>
 - Dredging, spreading & grading of material: <u>\$543,900</u>
 - Alternate dredging: <u>\$530,812</u>
- Planting: <u>\$100,000</u>
- <u>TOTAL: \$1,619,565</u>
- (about 81K per acre restored)

Photo credits and point-of-contact: cchaffee@crmc.ri.gov

Citizen Volunteers and Outreach Tours

Photo credits: cchaffee@crmc.ri.gov

Post thin layer placement at Ninigret, RI

Wigand.cathleen@epa.gov